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Abstract - By cutting through the contact/crack surface, the contact;crack problems can be treated
as a half-plane problem with the displacements/tractions prescribed along a specified region.
Through the conversion to half-plane problems. the analogy between the contact problems and
crack problems has been noticed before. However, to the authors’ knowledge, no detailed analogous
relations have been provided. Moreover, no contact problems have been solved directly by just
using the corresponding solutions of the crack problems, or vice versa. In this paper. special
consideration will be focused upon the connections between the punch problems and the interface
crack problems with one of the materials to be rigid. Similar to the analogy between line forces and
line dislocations, cracks and rigid line inclusions, or holes and rigid inclusions, we may now solve
the punch problems by analogy with the interface crack problems. In addition, very simple explicit
solutions for the contact pressure and the surface deformation are derived in this paper. Moreover,
a general procedure to get the real form solution is also described. Finally, three representative
punch problems are solved completely. They are the indentation by a flat-ended punch, a flat-ended
punch tilted by a couple, and the indentation by a parabolic punch. The explicit full field solutions,
and the real form solutions for the contact pressure and surface deformation of these three problems
are all provided. Based upon these closed-form solutions, several numerical examples were done
and their related stresses contours, surface deformations and contact pressures were also plotted to
help us see more clearly the physical behaviors of the punch problems. 1 1998 Elsevier Science Ltd.
All rights reserved.

1. INTRODUCTION

Solving problems by analogy techniques is not unusual. In the solution of torsional problems
the membrane analogy has been proved very valuable (Timoshenko and Goodier, 1970).
Their governing equations and boundary conditions are identical in the form of math-
ematical expressions, but their symbols have different physical meanings. Therefore, by
replacing the symbols, they can communicate with each other. Other kinds of analogic
problems known in the linear elastic are force and dislocation, crack and rigid line inclusion,
hole and rigid inclusion, etc. Their governing equations are the same, but their boundary
conditions are different in the sense that one is traction-prescribed the other is displacement-
prescribed. Due to the fact that the traction-prescribed and displacement-prescribed bound-
ary conditions have similar mathematical expressions, they can also benefit from analogy
technique.

As to the contact problems and the crack problems, similar analogy has been noticed
before, e.g. (Willis, 1968 ; Brock, 1978). However, to the authors’ knowledge, these two
kinds of problems were solved independently and no detailed analogous relations have
been provided. In this paper. the analogy will be discussed for the most general anisotropic
linear elastic materials and the contact problems will be solved directly by just using the
corresponding solutions of crack problems. The contact problems considered here will be
restricted to the two-dimensional cases in which the indentor is a rigid punch. By this
restriction, the materials above the interface crack will also be rigid. Through this study, it
is hoped that the analogy technique can be extended to the general contact and interface
crack problems. Moreover, it is also possible to explore the analogy between the three-
dimensional contact and crack problems since both of these two problems were usually
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formulated as problems of Boussinesq type (Sneddon, 1946; Sneddon and Lowengrub,
1969 ; Willis, 1996, 1967, 1968, 1970 ; Gladwell, 1980).

2. TWO-DIMENSIONAL ANISOTROPIC ELASTICITY

The basic equations for linear anisotropic elasticity are the strain—displacement equa-
tions, the stress—strain laws and the equations of equilibrium, which can be expressed in a
fixed rectangular coordinate system x;, / = 1,2, 3 as (the symbols x, and x, will be replaced
by x and y for the convenience of presentation)

1 .
8// = E(u[A/—i—u/'.i)- O-rj = Cf/'k.\‘c“k.n 0’1:/'./' = ijk.tuk‘.\f = 07 (2])

where u, o, and ¢, are, respectively, the displacement, stress and strain; the repeated
indices imply summation; a comma stands for differentiation and C, are the elastic
constants which are assumed to be fully symmetric and positive definite.

For two-dimensional problems in which x, does not appear in the basic equations or
the boundary conditions, the general solution to eqns (2.1) may be expressed in terms of
three holomorphic functions of complex variables (Stroh, 1958 ; Lekhnitskii, 1963). This
enables us to apply many of the powerful results of complex function theory to the two-
dimensional elasticity. For the later use of derivation, we now list a compact matrix form
solution (Stroh, 1958 ; Ting, 1986) which satisfies all the basic equations given in (2.1), i.e.,

u=2Reidf(x)) = 4f
¢ =2Re{Bf(2)} = Bf()+Bf(2), (2.2a)
where

d=la & &l B=lb b bl
[ =G ) AEN. n=xtpy, a=123 (2.20)

In the above equations, u = (u,, i, u,) is the vector form of displacement ; ¢ = (¢, ¢1. ¢3)
stands for the stress function vector which is related to the stresses by N

Gh = =2, On=¢;; (2.2¢)

P.. & = 1,2,3, are the material eigenvalues whose imaginary parts have been arranged to
be positive; (a,, b,), « = 1, 2, 3, are their associated eigenvectors; f,(z,), « = 1,2, 3, are three
holomorphic complex functions to be determined by satisfying the boundary conditions of
the problems considered. The superscript 7' denotes the transpose and the overbar represents
the conjugate of a complex number.

Note that (Suo, 1990; Hwu, 1993a) during the derivation through the method of
analytical continuation (Muskhelishvili, 1954), the argument of each component function
of f(z) is written as z = x + py without referring to its associated eigenvalues p,. Once the
solution of /(z) is obtained for a given boundary value problem, a replacement of z,. z, or
z; should be made for each component function to calculate field quantities from (2.2). In
other words, the function vector f(z) obtained through the method of analytical con-
tinuation has the form of )

[ = /@ LE.L@. z=x+py, (2.3)

which is not consistent with the solution form shown in (2.2b) and is valid only along the
boundary y = 0. To get the explicit full domain solution, a mathematical operation based
upon the above statement is needed. A translating technique presented by Hwu (1993a) is
then introduced as below.
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If an implicit solution is written as
J(z) = €<Lg.42)074. (2.4a)

with the understanding the subscript of z is dropped before matrix product and a replace-
ment of z|, z, or z; should be made for each component function of f(z) after the mul-
tiplication of matrices, the explicit solution can be expressed as

3
fz) =Y Lguz))>Cly. (2.4b)
~ fo=} ~
where
1 0 0 0 0 0 0 0 0
Li=10 0 0, L={0 1 0, L={0 0 0 (2.40)
0 0 0 0 0 0 0 0 1

In the above, the angular brackets {{)>)> stands for the diagonal matrnix in which
each component is varied according to the Greek index «, ie. (g (z,))>> =

dlag [gk(Z]), gk(22)3 gk(z3)]'

3. KNOWN ANALOGIC PROBLEMS

One of the special features of the Stroh’s formalism is that the solution form (2.2) is
neat and elegant. Due to its elegancy, many important characteristics can be found at the
first glance of the solution form. For example, the displacements and stress functions shown
in (2.2a) are distinguished only by the material eigenvector matrices 4 and B. Thus, the
relevant boundary conditions of the displacement prescribed problems differ from those of
the traction prescribed problems only in the appearance of the symbols 4 and B. Since the
mathematical formulations for the displacement prescribed problems and the traction
prescribed problems are identical, their solution should also be identical with 4 and B
interchanged. In the following, we list some known analogic problems to help the readers
see more clearly what we try to express.

Line force and line dislocation
Consider an infinite homogeneous anisotropic elastic space. The boundary conditions
for a line force {/dislocation b applied at (£, X,) along the x;-axis may be expressed as

line force j d¢ =1 for any close curve C enclosing £,
(S

line dislocation : j du=5h forany close curve C enclosing ¥, (3.1
.
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and ¢, — 0 at infinity. The solution to these two problems are (Eshelby et al., 1953)
line force : = 1 SIS ATE
ine force:  f(z) = i n(z,—2,)) A1,
1 .
line dislocation:  f(z) = 3 In(z,~Z2,))>Bb. (3.2)

Crack and rigid line inclusion

Consider a crack/rigid line inclusion of length of 2u centrally located at y = 0 and
|x| < a in a homogeneous anisotropic elastic medium. If the stresses vanish at infinity and
the crack surface is subjected to a uniform traction 7 and the rigid line inclusion is prescribed
by a uniform strain & the boundary conditions may be expressed as

crack: ¢, =17 fory=4+0 and —a<xy<a

¢

rigid line inclusion: u, =£, fory= 4+0 and -—-a<x<a (3.3)

and g;, — 0 at infinity. The solution to these two problems are (Ting, 1996)

)= — (=B
D)= (A (34

crack: f{(
rigid line inclosion:
Hole and rigid inclusion

Consider an infinite anisotropic plate containing an elliptic hole/rigid inclusion under
a concentrated force 7 applied at point ¥ = (X, %,). If the hole is assumed to be traction free
and the rigid inclusion is assumed to be perfectly bonded to the matrix, the boundary
conditions can be written as

hole: ¢, =0 along the hole boundary,

[ d¢ =7 for any close curve C enclosing .
Joo o

rigid inclusion: u, =0 along the inclusion boundary,

[ d¢ =i for any close curve C enclosing %, (3.5)
JC

and o;;, — 0 at infinity. The subscript (.#) means differentiation with respect to the tangent
direction of the boundary. The solution to these two problems are (Hwu and Yen, 1993)

. . g L3 I
hole: /() = fo(D) + i Y KLlog(, ' —{)>>yB BL AT
- LT

?N)

rigid inclusion:  f({) = f,(¢ Z<<10g(g7 ooy ALATE (3.6a)
where
So(8) = ({log(¢, =A™ (3.6b)
L LI @ pI) A+ (d 1 pib
{, = VE @ *)ﬁ {o ="t \Z* G pkf—-r)« (3.6¢)
a—ip,h —ipeh

and a, b arc the half length of the major and minor axes of the ellipse.
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4. SOLVING THE PUNCH PROBLEMS BY ANALOGY TECHNIQUE

At the first glance, it is not easy to see¢ any connection between the punch problems
and the collinear interface crack problems. Fortunately, we solved these two seemingly
different problems individually by using the Stroh’s formalism and the method of analytical
continuation (Hwu, 1993a; Fan and Hwu, 1996). With the obtained solutions, we saw
some similar behaviors like the stress oscillatory characteristics near the interface crack tips
or the ends of the flat-ended punches. This similarity stimulates us to find the connection
between these two problems. By carefully reviewing these two different boundary
conditions, we find a simple way to solve the punch problems by analogy with the collinear
interface crack problems.

Consider the case that a set of rigid punches of given profiles are brought into contact
with the surface of the half-plane and are allowed to indent the surface in such a way that
the punches completely adhere to the half-plane on initial contact and during the subsequent
indentation no slip occurs and the contact region does not change. Let us suppose the
contact region L is the union of a finite set of line segments L, = (a, b,). k = 1.2.... .1,
where the ends of the segments are encountered in the order a,,b,,a,, bs, ..., a,, b, when
moving in the positive x-direction. For this case the displacements of the surface of the
half-plane are known at each point of the contact region, then the boundary conditions are

w(x) = (U (x), 0, () + ¢, 0)' = d(x), xel,
1(x) =(0,,,0,,,06.,) =¢'(x) =0, x¢L, 4.1)

where u,(x) and v,(x) are related to the profile of the kth punch and ¢, is the relative depth
of indentation.

In order to solve the punch problems by using analogy technique, we now examine the
boundary conditions of the collinear interface crack problems. The prescribed-traction
condition on the crack portion, as well as the continuity of displacements and tractions
across the bonded portion of the interface may be written as (Hwu, 1993a)

¢i(x) =i(x) =1 x€eL.

1 () =160, ¢i(¥) = ¢a(0). x¢L (42)
where prime (") denotes differentiation with respect to its argument. The symbols marked
with the subscripts 1 and 2 represents, respectively, the quantities pertaining to the materials
located upper and lower the interface. The solution satisfying the boundary conditions set

in (4.2) has been found by using the Stroh’s formalism and the method of analytical
continuation (Hwu, 1993a). The results are

[i(2) =B (z),  [a(2) = B 'M* " M*(z), (4.3a)

where

1 | , . )
V@) =5 XHG) J X O] ) ds+ X R 2). (4.3b)
L

In the above, p,(z) is an arbitrary polynomial vector with the degree not higher than the
number of cracks n, which may be determined by the infinity conditions and the single-
valuedness requirement of displacements. M* is the bimaterial matrix defined as

M*=D—iW., D=L'+L;'. W=SL"'~SL;' (4.4)

where S, and L, are 3 x 3 real matrices composed of the elasticity constants. They are defined



3950 C. Hwuand C. W. Fan

by S, =i2A.B/ -1, L, = —2iBB].i=1,2(Ting, 1988). X ¥(z) is the basic Plemelj function
matrix satisfying

X*5(x) = X*, (x), x¢L.
X*J () +M* I M* X5 (x) =0, xel. (4.5)

Since the punches are assumed to be rigid, only one material, i.e. the half-plane to be
indented, is considered in the boundary conditions (4.1). For the collinear interface crack
problems, two different materials are considered in the boundary conditions (4.2). Without
further studying, it looks no connections between (4.1) and (4.2). However, if we consider
the material above the interface to be rigid, the boundary conditions (4.2} will then be
reduced to

u(x) =0, x¢L. (4.6)

Note that in (4.6) and the following derivation the subscript 2 is dropped for the convenience
of presentation, and the subscript 1 will not enter into the boundary conditions since
material 1 is assumed to be rigid.

Comparison between (4.1) and (4.6), we see that (4.6) is just a counterpart of (4.1)
since the traction prescribed condition ¢” =7 of (4.6) corresponds to the displacement
prescribed condition ¥” = i’ of (4.1), and the displacement prescribed condition ¥’ = 0 of
(4.6) corresponds to the traction prescribed condition ¢’ = 0 of (4.1). Therefore, we may
solve the punch problems by using the solutions of the collinear interface crack problems,
eqns (4.3)—(4.5), with material 1 taken to be rigid, and interchanging the material eig-
envector matrices 4 and B. With this concept in mind, we now show the detailed math-
ematical derivation and compare the results with the solution found in (Fan and Hwu,
1996).

[t is known that all the components of the real matrix L is proportional to the Young's
modulus (Hwu, 1993b). If material 1 is rigid, L;' of (4.4) will vanish. and D = L™,
W = —SL™'. The bimaterial matrix M* defined in (4.4) then becomes

M* =([+iS)L =M, (4.7)
where M is the impedance matrix defined as (Ting, 1988),
M= —iBA " = L(I-iS) "' (4.8)

Substituting (4.7) into (4.3) and (4.5), we have

2 -
—
™
=

z) =B MM (),

1 ot R .
7 X8 le @) ds+ X EE)p (). (4.9a)

where

X* () +MM 'X* (x)=0. xelL. (4.9b)

(4.9) is the solution for the collinear interface crack problems with material 1 taken to be
rigid. To get the solution for the punch problems, we now interchange 4 and B (which also
leads to the interchange of M and — M ') and replace f by i'. The results are
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G =47 M),

1 1
Yo = S(Z)J P— [X* (®]7'@(s) ds+ X §(2)pa(2), (4.10a)
L

B

where

X*(x)=X* (x), x¢L,
X* () +M MY ¥ (x) =0, xelL. (4.10b)

In order to compare with the solutions obtained in (Fan and Hwu, 1996). we make
the following rearrangement,

f(2)=B100). 0@) =iMy(z). Xo(2) = MX@). (4.11)

The solution shown in (4.10) may now be rewritten as

f(z)=B""0(2),

1 1
Oz) = 5-Xo(z )J 2 (X5 ()] M (s) ds+ Xo(2)pa(2), (4.12a)

where

Xo(x)=Xg(x), x¢L,
Xi()+MM 'Xi(x) =0, xel, (4.12b)

which is exactly the same as that shown in (Fan and Hwu, 1996). The Plemelj function
matrix Xo(z) satisfying (4.12b) can also be obtained by analogy with the collinear interface
crack problems (Hwu, 1993a) with M* replaced by M ~'. This replacement is due to the
comparison of (4.12b) and (4.5). One should be very careful not to take (4.7) for the
replacement since its related solution (4.9b) is not for punch problems. The solution to
(4.12b) is

Xo(2) = AT(2), (4.13a)

where

Aéuh@4¢ L) = ({ﬂ h—AL——Af_bY>§ (4.13b)

I (E—a)z=b) \FT4) [

&, and A, o=123 of (413b) are the eigenvalues and eigenvectors of
(M~ — 2’”mM "4, = 0. The explicit solutions for the cigenvalues ¢, are ¢ = —¢, =¢,
e, =0, and

1 . 12
&= 57*_[ In ii/}. B = L_ Etr(ks ):I » (414)

where tr stands for the trace of matrix. Moreover, for normalizing the eigenvector
matrix A, the normalization proposed by Hwu (1993a) may be replaced by

sATM T+ MDA =1
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Note that p,(z) in (4.12a) differs from that in (4.10a) by a constant matrix M.
However, since p,(z) is an undetermined polynomial vector, it makes no difference to
change its undetermined coefficients. For the convenience of presentation, we keep the
same symbol p,(z) in (4.12a). and expand p,(z) as p,(z) = dy+diz+ +d, 2" The
unknown coefficients of p,(z) may then be determined by the infinity condition which leads
to (Fan and Hwu, 1996)

EIH = ,,,,,./\\’ ](1«, (415)
and the force conditions

G = ‘J [0'(x*)—0'(x )]dx, fork=1,2,...,n (4.16)
h L,
where ¢, is the known resultant force vector applied on the kth punch. and ¢ = £} _, ¢,.

5. CONTACT PRESSURE AND SURFACE DEFORMATION

In engineering application, it is always interesting to know the contact pressure under
the punches and the surface deformation outside the punches. By using some identities
(Ting, 1988), very simple explicit solutions for the contact pressure and the surface defor-
mation, which were not shown in the literature, will be derived in this section.

The tractions and displacements along the surface of the half-plane are related to §(z)
of (4.12a) by (Fan and Hwu, 1996)

ilﬂy’(,\') = Q’(.\‘*)%—A\/_[Aj i l(]’(x’ ),
1(x) =0(x")—0(x"). (5.1

Contact pressure

To find a simplified expression for the contact pressure, we substitute the displacement
prescribed condition (4.1), into (5.1),, which leads to

O (x")=MM '0(x)—iMi(x), xel. (5.2)
Substituting (5.2) into (5.1),, and using the identity shown in (4.8),. we obtain
Hx) =2ML ' (x")—iMi'(x), xel. (5.3)

Further reduction may also be done by substituting the definitions of M(= —iBA4~") and
L(= —2iBB") into (5.3), and using the identity 478+ B"4 = 0 (Ting, 1988). The result is

() =4 T/ (x ) —iMi(x), xel. (5.4)

Surface deformation
For the surface deformations outside the punches, we substitute the traction prescribed
condition (4.1), into (5.1),, which leads to

O )=0(x ). x¢L. (5.5)
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Substituting (5.5) into (5.1}, and using the identity shown in (4.8),, we obtain
w(x)= —2iL "0 (x"), xé¢L. (5.6)
Similar to (5.4), we may further reduce (5.6) to
w(x)=B"f(x"). x¢L (5.7)

The simplified expressions shown in (5.3), (5.4) and (5.6). (5.7) are in complex form,
In engineering applications, it is always interesting to know the real form solution since
both of the stresses and displacements are real quantities. In most cases, the real form
solutions can be found by employing the following identities which are obtained also by
analogy with the identities found in the interface crack problems (Hwu, 1993b) with A*
replaced by M~

AL A=1
ATM 'A = ({1 ~—tanh(ne,))),
ATM 'A = ({1 +tanh(re,))),
M "L 'A = Ae ™ cosh(ne,) )y,
AN =1+ ;‘ S+ ‘ﬂs (5.8)

where ¢, = ¢, ¢; = ¢, ¢; = | and ¢4, ¢, are real and imaginary parts of ¢ which is an arbitrary
complex number.

6. THREE REPRESENTATIVE PUNCH PROBLEMS

In this section, three representative punch problems will be solved completely. They
are the indentation by a flat-ended punch, a flat-ended punch tilted by a couple. and the
indentation by a parabolic punch. The first two problems have been studied in our previous
paper (Fan and Hwu, 1996). In that paper, we provided the solutions for the contact
pressure and its reduction to the orthotropic and isotropic half-planes. To have a complete
picture for the punch problems, in this section we would like to supplement the explicit full
field solution for the stresses and displacements and the real form solutions for the contact
pressure and surface deformation. The third problem is newly solved, therefore, the detailed
derivation for the explicit full field solution, contact pressure under the punch and surface
deformation outside the punch will all be given. Based upon these closed-form solutions,
several numerical examples were done and their related stresses contours, surface defor-
mations and contact pressures were also plotted to help us see more clearly the physical
behaviours of the punch problems.

(1) Indentation by a flat-ended punch

Consider the case of indentation by a single punch (n = 1) with a flat-ended profile
(4" = 0) which makes contact with the half-plane over the region |x| < a, and the force p
applied on the punch is given. From (4.12a),, (4.13) and (4.15) we find )

|
(=) = 5 ALEA 'p. (6.1a)
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where
(9

By (6.1), (4.12a), and (2.4). the explicit full field solution can be expressed as

] 3
S = Imi Y LTz B 'ALATB. (6.2)
~ n[ P ~

To find the contact pressure and the surface deformations, we need to calculate I'(x ")
for |x| < a and |x] > a. This can easily be evaluated by using a bipolar coordinate system
with two origins located at the ends of the punch and introducing a cut along the punch
region. The results are

’-()m. ' \\
r(\ ) B i — " In’ X >/, for |’Ci < a,
N X /
// /// 1 [rd \\ \\
IN'x") = /\(\ + e o BT A forxy >a and X < —al (6.3)
A T —a / /

Substituting (6.1) and (6.3) into (5.3) and (5.6), we may get the solutions for the contact
pressure under the punch and the surface deformation outside the punch. Since the stresses
and deformations are real quantities, it is of interest to obtain the real form solutions in
order to have a better understanding of the physical behavior of the punch problems. By
using the identities given in (5.8), the real form solution for the contact pressure under the
punch and surface deformation gradient outside the punch can be found to be

1 l—cp 0 ¢
Ux) =z [1+ Ry 5’] A Ixl < a,
na -

oo P

vk R
=S"+ %57}/5, x>a and x < —a, (6.4a)

where
. N | atx
Cp+ic; = cosh(me)e ™ ""ax

ix+a
r;:!n‘

X

cEticf=e . (6.4b)

The above solutions (6.2) and (6.4) are valid for general anisotropic materials. In
principle the explicit full field solution shown in (6.2) are valid only for the nondegenerate
materials, that is the material eigenvalues p,, x = 1,2, 3, are distinct or three independent
material eigenvectors a,,0,.a = 1,2,3, can be found when p, are repeated. By using a
correspondence relation between anisotropic and isotropic elasticity (Hwu, 1996), an ana-
lytical solution for isotropic materials deduced from (6.2) is obtained and is proved to be
identical to that shown in Muskhelishvili (1954). However, to develop a unified computer
program valid for any kind of anisotropic materials, the degenerate materials are treated
by introducing a small perturbation in the material properties. As to the real form solution
shown in (6.4), no special numerical treatments or correspondence relations are needed for
the degenerate materials since the solutions do not contain any material eigenvalues p, or
eigenvector matrices A, Bexplicitly. The reduction to the orthotropic and isotropic materials
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Fig. 1. Contact pressure and surface deformation for a flat-ended punch indenting into an ortho-
tropic half-plane. (The oscillatory singularity zone near the ends of the punch is too small (about
10~“a) to be shown.)

for the contact pressure have been shown in (Fan and Hwu, 1996), whose results also agree
with those shown in Muskhelisvili (1954).

Numerical example

Consider an orthotropic half-plane whose material properties are E, = 60.7 Gpa,
E, =248 Gpa, G\; = 12.0 Gpa, v;; = 0.23, where E, G and v are, respectively, the Young’s
modulus, shear modulus and the Poisson’s ratio. The subscripts 1 and 2 denote the x and
v directions. The contact region 2a is set to be 2 m of which the size is just a reference for
the infinite domain. The contact pressure and the surface deformation are shown in Fig. 1.
The stress singularity near the corners of the punch shown by eqn (6.4) can be found in
this figure. However, since the oscillatory zone is too small (about 10™* @), the oscillatory
behavior near the corners of the punch cannot be revealed by this figure. To see the stresses
in depth and to see the anisotropic effect, the contour plot of the nondimensionalized stress
o2/(p/2a) shown in Fig. 2 may be helpful, which shows that the maximum stress along
X = constant occurs at a certain point under the surface not the point on the surface.

Note that when we plot the deformation outside the punch by using egn (6.4a),, an
integration is necessary for finding ¥ from »’. However, the integration constant denoting
the rigid body translation cannot be determined due to the infinite feature of our problem.
To remedy this, we select the origin as a reference point whose displacement is set to be
zero. By this way, the outlook of the surface deformation may be preserved without affecting
our understanding of the physical behavior.

(i1) Indentation tilted by a couple

The second problem is a flat-ended punch (n = 1) tilted by the application of a
couple m. The punch is of width 2¢ and is tilted through a small angle & measured in the
counterclockwise direction (4" = (0,&,0)" = &i,). The complex form solutions for the contact
pressure and the relation between the applied couple m and the tilted angle & have been
given in (Fan and Hwu, 1996). Using a similar approach as the above subsection, we now
list the explicit full field solution f”(z), the real form solution for the contact pressure f(x).
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Fig. 2. Stress contour diagram of a,,/(p/2a) for a flat-ended punch indenting into an orthotropic
half-plane whose principal material axes are oriented 45” from the x—y coordinate axes.

and the real form solution for the surface deformation gradients #'(x) outside the punch.
They are

f@= %{ {ljl - Z <<rk(31)(21+21’08k)>>§"/}!k/}‘l}éba
~ e

H(X) = [1+ SRy 5’57}1% x| < a,
\//al XZ 'B
_ X l—ck , o <.
w(x) =E/+—= [ I+ =S8 ix x>a and x< —a, (6.5a)
L N, a2 = /f

where
) Latx 2ia£
cx+ic; = cosh(me)e """ (1 + —,
X

<1 + 21?) (6.5b)

a

v+
- fEln—

ck+ick=e

X4

The real form relation between the applied couple m and the tilted angle « is found to be

o, 4¢° 2
m=ca | l———=8" |L; . (6.6)
2 ' 22
Numerical example

Based upon the above formulae, the numerical calculation can also be done. Using the
same material as subsection (i), setting the applied couple m = 2 x 10° N-m, and calculating
by (6.5), the contact pressure and the surface deformation of the present problem are
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Fig. 3. Contact pressure and surface deformation for a flat-ended punch tilted by a couple. (The
oscillatory singularity zone near the ends of the punch is too small (about 107%a) to be shown.)

plotted in Fig. 3. From this figure, we see that the applied couple m induces tension on the
right hand side and compression on the left hand side. It seems that the presence of negative
pressure is wrong. However, the assumption that the punches completely adhere to the
half-plane on the initial and subsequent indentation may allow this unrealistic result.
Moreover, the oscillatory singularity behavior also occurs near the corners of the punches
of which the region is too small to be shown in the figure. One more thing we would like
to explain is that the negative and positive pressures under the punch seem to be unbalanced.
By actually numerical integration along the punch region, we proved that it is really
balanced, and this seemingly unbalance is due to the magnification of the rotation angle.

(i) Indentation by a parabolic punch
Consider a symmetric punch whose end section can be expressed by a parabolic curve

X
y=1uL x| < 6.7

where R is the radius of curvature, and 2/ is the width of the punch. Let us suppose on
indentation under the force p the size of the contact region is 2a( < 2/). By the assumption
that the punch completely adheres to the half-plane, we have

@) = b ¥ <a (6.8)

Substituting (6.8) and (4.15) into (4.12a),, we find

iy = v | e ot dengi o g
0) = 52 X0(2) J XG0 AL+ 5= X (DA, (6.9)

-d

The line integral in (6.9) can be evaluated by a way similar to that presented in (Fan and
Hwu, 1996). The result is
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/

@ _ , ] , R \\ \\ ]
j ;—_[J X' deMiy = mi {z[{\’o(z)]] — <(:‘ + 2iag,z — <§ +2£:;>a‘ ’,)/‘; /}‘}@12.

VA

Substituting (6.10) and (4.13) into (6.9), we have

i /
(2) = ==zl —AT(z) ( { =7 +2iae,z— 2¢] st Z
0(z 2R{! ATY( )<\ + 2iae, ( + {1)0 >> }Lz +Am AT()A™'p.

(6.11)

where '(z) is the same as (6.1b). By (6.11), (4.12a), and (2.4), the explicit full field solution
can be expressed as

Y 1 X
f(z) = << OB Lin— Z ’ (2. [-, + 2iag,z, — (2 +2Ff>a3" ) ;,\ X
- /)

B 'ALA 'Lis+ z<<rk(-a)>>B 'ALA B (6.12)

The real form solutions for the contact pressure and the surface deformation may also be
obtained by the way similar to that presented in subsection (i). The results are

2% —a? L= (cOn e ()
() = [H (f‘)’*s7‘+(“)’§’1gz

2R, a* — X p- - B
l l_CR gt Crar | )
+ I+ ——=8"+=8"|p, |x|<a (6.13a)
n/ @ —x* S’ g~ |~
¥ - L (*g (¥
R 2R/ X —a A B N
_ | ] l—ck o ]
—+ = ’ﬂ:l\, !+ R 5 + - S p. x>a and x < -, (613b)
ny X —d’ B A
where
L, a+x
cx+ic; = cosh(me)e "oy
Chtick= e
1
Cp+ilg = 55 [2x~ — (1 +4&*)a* + idaex], (6.13¢)
2x°
and

(O = Cplr—CiCrn (€Y = Crlr+c;Cp,

(X g = c§Cp— T, (*0)) = %6, + CIog. (6.13d)

Note that during the derivation of (6.13b), the identities L'S’L = -5 and
L~'S” L = S* (Ting. 1986) have been used.
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Fig. 4. Contact pressure and surface deformation for a parabolic punch indenting into an orthotropic

half-plane. (The oscillatory singularity zone near the ends of the punch is too small (about 10 *a)
to be shown.)

Numerical example

The material properties for the half-plane used in this example are the same as those
given in subsection {i). The force p applied on the punch is in the vertical direction and
equals to 5.0 x 10%N¢. The size of the contact region 2a is equal to the punch width 2/ where
[ = 1 m, and the radius of curvature R of the parabolic punch is R = 100 m of which the
size is just a reference for the infinite domain. By using the real form solutions shown in
(6.13), the results of the contact pressure and surface deformation are shown in Fig. 4. As
expected, the stress singularity also occurs near the corners of the punch.

7. CONCLUSIONS

In this paper, the punch problems are solved by using the solutions of the collinear
interface crack problems with one of the materials taken to be rigid and the material
cigenvector matrices 4 and B interchanged. The solutions found by this analogy have been
proved to be identical to those given in the literature. Besides this analogy, very simple
expressions for the contact pressure and the surface deformation have been derived. By
some more analogies, the explicit full field solutions, the real form solutions for the contact
pressure and the surface deformation are derived for three representative punch problems.
Based upon these closed-form solutions, several numerical examples and illustrating figures
were done. It is also hoped that the analogy concept may be extended to solve the problems
of elastic contact between two dissimilar anisotropic media.
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